k-DPPs: Fixed-Size Determinantal Point Processes

نویسندگان

  • Alex Kulesza
  • Ben Taskar
چکیده

Determinantal point processes (DPPs) have recently been proposed as models for set selection problems where diversity is preferred. For example, they can be used to select diverse sets of sentences to form document summaries, or to find multiple nonoverlapping human poses in an image. However, DPPs conflate the modeling of two distinct characteristics: the size of the set, and its content. For many realistic tasks, the size of the desired set is known up front; e.g., in search we may want to show the user exactly ten results. In these situations the effort spent by DPPs modeling set size is not only wasteful, but actually introduces unwanted bias into the modeling of content. Instead, we propose the k-DPP, a conditional DPP that models only sets of cardinality k. In exchange for this restriction, k-DPPs offer greater expressiveness and control over content, and simplified integration into applications like search. We derive algorithms for efficiently normalizing, sampling, and marginalizing kDPPs, and propose an experts-style algorithm for learning combinations of k-DPPs. We demonstrate the usefulness of the model on an image search task, where k-DPPs significantly outperform MMR as judged by human annotators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point algorithms for learning determinantal point processes

Determinantal point processes (DPPs) offer an elegant tool for encoding probabilities over subsets of a ground set. Discrete DPPs are parametrized by a positive semidefinite matrix (called the DPP kernel), and estimating this kernel is key to learning DPPs from observed data. We consider the task of learning the DPP kernel, and develop for it a surprisingly simple yet effective new algorithm. O...

متن کامل

Determinantal point process models and statistical inference

Statistical models and methods for determinantal point processes (DPPs) seem largely unexplored. We demonstrate that DPPs provide useful models for the description of repulsive spatial point processes, particularly in the ‘soft-core’ case. Such data are usually modelled by Gibbs point processes, where the likelihood and moment expressions are intractable and simulations are time consuming. We e...

متن کامل

Learning Determinantal Point Processes in Sublinear Time

We propose a new class of determinantal point processes (DPPs) which can be manipulated for inference and parameter learning in potentially sublinear time in the number of items. This class, based on a specific low-rank factorization of the marginal kernel, is particularly suited to a subclass of continuous DPPs and DPPs defined on exponentially many items. We apply this new class to modelling ...

متن کامل

On Sampling and Greedy MAP Inference of Constrained Determinantal Point Processes

Subset selection problems ask for a small, diverse yet representative subset of the given data. When pairwise similarities are captured by a kernel, the determinants of submatrices provide a measure of diversity or independence of items within a subset. Matroid theory gives another notion of independence, thus giving rise to optimization and sampling questions about Determinantal Point Processe...

متن کامل

Large-Margin Determinantal Point Processes

 Investigate determinantal point processes (DPPs) for discriminative subset selection  Proposemargin based parameter estimation to explicitly track errors in selecting subsets  Balance different types of evaluation metrics, e.g., precision and recall  Improve modeling flexibility by multiple-kernel based parameterization  Attain state-of-the-art performance on the tasks of video and docume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011